Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.117
Filter
1.
CNS Neurosci Ther ; 30(4): e14727, 2024 04.
Article in English | MEDLINE | ID: mdl-38644593

ABSTRACT

AIMS: Ventral pathway circuits are constituted by the interconnected brain areas that are distributed throughout the brain. These brain circuits are primarily involved in processing of object related information in brain. However, their role in object recognition memory (ORM) enhancement remains unknown. Here, we have studied on the implication of these circuits in ORM enhancement and in reversal of ORM deficit in aging. METHODS: The brain areas interconnected to ventral pathway circuits in rat brain were activated by an expression of a protein called regulator of G-protein signaling 14 of 414 amino acids (RGS14414). RGS14414 is an ORM enhancer and therefore used here as a gain-in-function tool. ORM test and immunohistochemistry, lesions, neuronal arborization, and knockdown studies were performed to uncover the novel function of ventral pathway circuits. RESULTS: An activation of each of the brain areas interconnected to ventral pathway circuits individually induced enhancement in ORM; however, same treatment in brain areas not interconnected to ventral pathway circuits produced no effect. Further study in perirhinal cortex (PRh), area V2 of visual cortex and frontal cortex (FrC), which are brain areas that have been shown to be involved in ORM and are interconnected to ventral pathway circuits, revealed that ORM enhancement seen after the activation of any one of the three brain areas was unaffected by the lesions in other two brain areas either individually in each area or even concurrently in both areas. This ORM enhancement in all three brain areas was associated to increase in structural plasticity of pyramidal neurons where more than 2-fold higher dendritic spines were observed. Additionally, we found that an activation of either PRh, area V2, or FrC not only was adequate but also was sufficient for the reversal of ORM deficit in aging rats, and the blockade of RGS14414 activity led to loss in increase in dendritic spine density and failure in reversal of ORM deficit. CONCLUSIONS: These results suggest that brain areas interconnected to ventral pathway circuits facilitate ORM enhancement by an increase in synaptic connectivity between the local brain area circuits and the passing by ventral pathway circuits and an upregulation in activity of ventral pathway circuits. In addition, the finding of the reversal of ORM deficit through activation of an interconnected brain area might serve as a platform for developing not only therapy against memory deficits but also strategies for other brain diseases in which neuronal circuits are compromised.


Subject(s)
Brain , Memory Disorders , RGS Proteins , Recognition, Psychology , Animals , Recognition, Psychology/physiology , Male , Rats , RGS Proteins/metabolism , RGS Proteins/genetics , Neural Pathways , Aging/physiology
2.
Circ Res ; 134(10): 1240-1255, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38563133

ABSTRACT

BACKGROUND: Pericytes are capillary-associated mural cells involved in the maintenance and stability of the vascular network. Although aging is one of the main risk factors for cardiovascular disease, the consequences of aging on cardiac pericytes are unknown. METHODS: In this study, we have combined single-nucleus RNA sequencing and histological analysis to determine the effects of aging on cardiac pericytes. Furthermore, we have conducted in vivo and in vitro analysis of RGS5 (regulator of G-protein signaling 5) loss of function and finally have performed pericytes-fibroblasts coculture studies to understand the effect of RGS5 deletion in pericytes on the neighboring fibroblasts. RESULTS: Aging reduced the pericyte area and capillary coverage in the murine heart. Single-nucleus RNA sequencing analysis further revealed that the expression of Rgs5 was reduced in cardiac pericytes from aged mice. In vivo and in vitro studies showed that the deletion of RGS5 impaired cardiac function, induced fibrosis, and morphological changes in pericytes characterized by a profibrotic gene expression signature and the expression of different ECM (extracellular matrix) components and growth factors, for example, TGFB2 and PDGFB. Indeed, culturing fibroblasts with the supernatant of RGS5-deficient pericytes induced their activation as evidenced by the increased expression of αSMA (alpha smooth muscle actin) in a TGFß (transforming growth factor beta)2-dependent mechanism. CONCLUSIONS: Our results have identified RGS5 as a crucial regulator of pericyte function during cardiac aging. The deletion of RGS5 causes cardiac dysfunction and induces myocardial fibrosis, one of the hallmarks of cardiac aging.


Subject(s)
Fibroblasts , Fibrosis , Pericytes , RGS Proteins , Pericytes/metabolism , Pericytes/pathology , Animals , RGS Proteins/genetics , RGS Proteins/metabolism , RGS Proteins/deficiency , Fibroblasts/metabolism , Fibroblasts/pathology , Mice , Cells, Cultured , Aging/metabolism , Aging/pathology , Mice, Inbred C57BL , Mice, Knockout , Myocardium/metabolism , Myocardium/pathology , Male , Coculture Techniques
3.
J Genet ; 1032024.
Article in English | MEDLINE | ID: mdl-38444027

ABSTRACT

Typhoid is endemic in India and has high global incidence. There were large outbreaks of typhoid in India between 1990 and 2018. Available typhoid vaccines induce variable levels of protective antibodies among recipients; thus, there is variability in response to the vaccine. Interindividual genomic differences is hypothesized to be a determinant of the variability in response. We studied the antibody response of ~1000 recipients of the Vi-polysaccharide typhoid vaccine from Kolkata, India, who showed considerable variability of antibody response, i.e., anti-Vi-polysaccharide antibody level 28 days postvaccination relative to prevaccination. For each vaccinee, wholegenome genotyping was performed using the Infinium Global Screening Array (Illumina). We identified 39 SNPs that mapped to 13 chromosomal regions to be associated with antibody response to the vaccine; these included SNPs on genes LRRC28 (15q26.3), RGS7 (1q43), PTPRD (9p23), CERKL (2q31.3), DGKB (7p21.2), and TCF4 (18q21.2). Many of these loci are known to be associated with various blood cell traits, autoimmune traits and responses to other vaccines; these genes are involved in immune related functions, including TLR response, JAK-STAT signalling, phagocytosis and immune homeostasis.


Subject(s)
RGS Proteins , Typhoid Fever , Typhoid-Paratyphoid Vaccines , Humans , Typhoid-Paratyphoid Vaccines/genetics , Antibody Formation , Typhoid Fever/epidemiology , Typhoid Fever/prevention & control , Genomics , Polysaccharides
4.
J Biol Chem ; 300(4): 107127, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38432633

ABSTRACT

Regulators of G protein signaling (RGS) proteins constrain G protein-coupled receptor (GPCR)-mediated and other responses throughout the body primarily, but not exclusively, through their GTPase-activating protein activity. Asthma is a highly prevalent condition characterized by airway hyper-responsiveness (AHR) to environmental stimuli resulting in part from amplified GPCR-mediated airway smooth muscle contraction. Rgs2 or Rgs5 gene deletion in mice enhances AHR and airway smooth muscle contraction, whereas RGS4 KO mice unexpectedly have decreased AHR because of increased production of the bronchodilator prostaglandin E2 (PGE2) by lung epithelial cells. Here, we found that knockin mice harboring Rgs4 alleles encoding a point mutation (N128A) that sharply curtails RGS4 GTPase-activating protein activity had increased AHR, reduced airway PGE2 levels, and augmented GPCR-induced bronchoconstriction compared with either RGS4 KO mice or WT controls. RGS4 interacted with the p85α subunit of PI3K and inhibited PI3K-dependent PGE2 secretion elicited by transforming growth factor beta in airway epithelial cells. Together, these findings suggest that RGS4 affects asthma severity in part by regulating the airway inflammatory milieu in a G protein-independent manner.


Subject(s)
Asthma , RGS Proteins , Animals , Humans , Mice , Asthma/metabolism , Asthma/genetics , Asthma/pathology , Bronchoconstriction/genetics , Dinoprostone/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Mice, Knockout , Phosphatidylinositol 3-Kinases/metabolism , Respiratory Hypersensitivity/metabolism , Respiratory Hypersensitivity/genetics , Respiratory Hypersensitivity/pathology , RGS Proteins/metabolism , RGS Proteins/genetics , Cell Line
5.
J Hum Genet ; 69(3-4): 145-152, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38332109

ABSTRACT

Intellectual disability (ID) is associated with an increased risk of developing psychiatric disorders, suggesting a common underlying genetic factor. Importantly, altered signaling and/or expression of regulator of G protein signaling 6 (RGS6) is associated with ID and numerous psychiatric disorders. RGS6 is highly conserved and undergoes complex alternative mRNA splicing producing ~36 protein isoforms with high sequence similarity historically necessitating a global approach in functional studies. However, our recent analysis in mice revealed RGS6 is most highly expressed in CNS with RGS6L(+GGL) isoforms predominating. A previously reported genetic variant in intron 17 of RGS6 (c.1369-1G>C), associated with ID, may provide further clues into RGS6L(+GGL) isoform functional delineation. This variant was predicted to alter a highly conserved canonical 3' acceptor site creating an alternative branch point within exon 18 (included in a subset of RGS6L(+GGL) transcripts) and a frameshift forming an early stop codon. We previously identified this alternative splice site and demonstrated its use generates RGS6Lζ(+GGL) isoforms. Here, we show that the c.1369-1G>C variant disrupts the canonical, preferred (>90%) intron 17 splice site and leads to the exclusive use of the alternate exon 18 splice site, inducing disproportionate expression of a subset of isoforms, particularly RGS6Lζ(+GGL). Furthermore, RGS6 global knockout mice do not exhibit ID. Thus, ID caused by the c.1369-1G>C variant likely results from altered RGS6 isoform expression, rather than RGS6 isoform loss. In summary, these studies highlight the importance of proper RGS6 splicing and identify a previously unrecognized role of G protein signaling in ID.


Subject(s)
Cataract , Intellectual Disability , Microcephaly , RGS Proteins , Animals , Humans , Mice , Cataract/genetics , GTP-Binding Proteins/genetics , Intellectual Disability/genetics , Microcephaly/genetics , Protein Isoforms/genetics , RGS Proteins/genetics , RGS Proteins/metabolism , RNA Splice Sites
6.
Cells ; 13(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38391904

ABSTRACT

Acting as GTPase activating proteins promoting the silencing of activated G-proteins, regulators of G protein signaling (RGSs) are generally considered negative modulators of cell signaling. In the CNS, the expression of RGS4 is altered in diverse pathologies and its upregulation was reported in astrocytes exposed to an inflammatory environment. In a model of cultured cortical astrocytes, we herein investigate the influence of RGS4 on intracellular calcium signaling mediated by type 5 metabotropic glutamate receptor (mGluR5), which is known to support the bidirectional communication between neurons and glial cells. RGS4 activity was manipulated by exposure to the inhibitor CCG 63802 or by infecting the cells with lentiviruses designed to achieve the silencing or overexpression of RGS4. The pharmacological inhibition or silencing of RGS4 resulted in a decrease in the percentage of cells responding to the mGluR5 agonist DHPG and in the proportion of cells showing typical calcium oscillations. Conversely, RGS4-lentivirus infection increased the percentage of cells showing calcium oscillations. While the physiological implication of cytosolic calcium oscillations in astrocytes is still under investigation, the fine-tuning of calcium signaling likely determines the coding of diverse biological events. Indirect signaling modulators such as RGS4 inhibitors, used in combination with receptor ligands, could pave the way for new therapeutic approaches for diverse neurological disorders with improved efficacy and selectivity.


Subject(s)
RGS Proteins , Receptors, Metabotropic Glutamate , Rats , Animals , Receptors, Metabotropic Glutamate/metabolism , Calcium/metabolism , Astrocytes/metabolism , Rats, Sprague-Dawley , RGS Proteins/metabolism , GTP-Binding Proteins/metabolism , Calcium Signaling
7.
Mol Pharmacol ; 105(4): 272-285, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38351270

ABSTRACT

The signal transduction protein, regulator of G protein signaling 4 (RGS4), plays a prominent role in physiologic and pharmacological responses by controlling multiple intracellular pathways. Our earlier work identified the dynamic but distinct roles of RGS4 in the efficacy of monoamine-targeting versus fast-acting antidepressants. Using a modified chronic variable stress (CVS) paradigm in mice, we demonstrate that stress-induced behavioral abnormalities are associated with the downregulation of RGS4 in the medial prefrontal cortex (mPFC). Knockout of RGS4 (RGS4KO) increases susceptibility to CVS, as mutant mice develop behavioral abnormalities as early as 2 weeks after CVS resting-state functional magnetic resonance imaging I (rs-fMRI) experiments indicate that stress susceptibility in RGS4KO mice is associated with changes in connectivity between the mediodorsal thalamus (MD-THL) and the mPFC. Notably, RGS4KO also paradoxically enhances the antidepressant efficacy of ketamine in the CVS paradigm. RNA-sequencing analysis of naive and CVS samples obtained from mPFC reveals that RGS4KO triggers unique gene expression signatures and affects several intracellular pathways associated with human major depressive disorder. Our analysis suggests that ketamine treatment in the RGS4KO group triggers changes in pathways implicated in synaptic activity and responses to stress, including pathways associated with axonal guidance and myelination. Overall, we show that reducing RGS4 activity triggers unique gene expression adaptations that contribute to chronic stress disorders and that RGS4 is a negative modulator of ketamine actions. SIGNIFICANCE STATEMENT: Chronic stress promotes robust maladaptation in the brain, but the exact intracellular pathways contributing to stress vulnerability and mood disorders have not been thoroughly investigated. In this study, the authors used murine models of chronic stress and multiple methodologies to demonstrate the critical role of the signal transduction modulator regulator of G protein signaling 4 in the medial prefrontal cortex in vulnerability to chronic stress and the efficacy of the fast-acting antidepressant ketamine.


Subject(s)
Depressive Disorder, Major , Ketamine , RGS Proteins , Mice , Humans , Animals , Ketamine/pharmacology , Transcriptome , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/metabolism , Mice, Knockout , RGS Proteins/genetics , RGS Proteins/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/metabolism , Prefrontal Cortex/metabolism , Gene Expression Profiling , GTP-Binding Proteins/metabolism
8.
J Transl Med ; 22(1): 204, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409136

ABSTRACT

BACKGROUND: Prior evidence demonstrated that Regulator of G protein Signaling 6 (RGS6) translocates to the nucleolus in response to cytotoxic stress though the functional significance of this phenomenon remains unknown. METHODS: Utilizing in vivo gene manipulations in mice, primary murine cardiac cells, human cell lines and human patient samples we dissect the participation of a RGS6-nucleolin complex in chemotherapy-dependent cardiotoxicity. RESULTS: Here we demonstrate that RGS6 binds to a key nucleolar protein, Nucleolin, and controls its expression and activity in cardiomyocytes. In the human myocyte AC-16 cell line, induced pluripotent stem cell derived cardiomyocytes, primary murine cardiomyocytes, and the intact murine myocardium tuning RGS6 levels via overexpression or knockdown resulted in diametrically opposed impacts on Nucleolin mRNA, protein, and phosphorylation.RGS6 depletion provided marked protection against nucleolar stress-mediated cell death in vitro, and, conversely, RGS6 overexpression suppressed ribosomal RNA production, a key output of the nucleolus, and triggered death of myocytes. Importantly, overexpression of either Nucleolin or Nucleolin effector miRNA-21 counteracted the pro-apoptotic effects of RGS6. In both human and murine heart tissue, exposure to the genotoxic stressor doxorubicin was associated with an increase in the ratio of RGS6/Nucleolin. Preventing RGS6 induction via introduction of RGS6-directed shRNA via intracardiac injection proved cardioprotective in mice and was accompanied by restored Nucleolin/miRNA-21 expression, decreased nucleolar stress, and decreased expression of pro-apoptotic, hypertrophy, and oxidative stress markers in heart. CONCLUSION: Together, these data implicate RGS6 as a driver of nucleolar stress-dependent cell death in cardiomyocytes via its ability to modulate Nucleolin. This work represents the first demonstration of a functional role for an RGS protein in the nucleolus and identifies the RGS6/Nucleolin interaction as a possible new therapeutic target in the prevention of cardiotoxicity.


Subject(s)
MicroRNAs , RGS Proteins , Animals , Humans , Mice , Cardiotoxicity , MicroRNAs/genetics , Myocytes, Cardiac , Nucleolin , RGS Proteins/genetics , Signal Transduction/physiology
9.
Gene ; 906: 148222, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38331118

ABSTRACT

BACKGROUND: Familial Mediterranean fever (FMF) is an autosomal recessive autoinflammatory disease characterized by recurring fever, erythema, joint pain, and abdominal discomfort during acute episodes. While FMF patients typically share MEFV gene mutations, they display varying clinical manifestations, suggesting the involvement of modifying genes, epigenetic mechanisms, or environmental factors. G protein regulator signal 10 (RGS10), a member of the RGS protein family, exhibits anti-inflammatory effects in autoinflammatory diseases. There are no studies on the role of plays in FMF pathogenesis or histone modification in FMF. AIMS: This study aimed to shed light on the epigenetic regulation of FMF from several perspectives. The relationship between RGS10 DNA hypermethylation in FMF clinical parameters and the regulation of 22 histone modifications were examined in FMF attack patients and the control group. METHODS: Sixty FMF (remission/attack) and thirty healthy individuals were included in the study. First, RNA was isolated from the blood of patients/controls, and the expression of RGS10 was examined. Then, DNA was isolated from the patients, and gene-specific hypermethylation was investigated using the bisulfite conversion method. Finally, histone extraction was performed for FMF patients and controls and 22 histone H3 modifications were determined. In addition, using ADEX bioinformatics tools, RGS10 expression and methylation profiles were detected in different autoinflammatory diseases. RESULTS: This study indicate that RGS10 expression decreased in attack-free/attack patients than control, attributed to DNA methylation. In addition, there were a positive correlation between FMF patients and attack, WBC, neutrophil, MCHC and MPV. Moreover, higher H3K4 me3, H3K9 me2, and H3K14ac levels were observed in patients with FMF attacks. This research also showed a consistent decrease in RGS10 expression in patients with SjS, SSc, and T1D compared with controls. I also obtained five prognosis-related CpGs (cg17527393, cg19653161, cg20445950, cg18938673 and cg13975098) of RGS10 in patients with SjS, RA, SSc, SLE and T1D. CONCLUSION: The present study provides insights into the complex relationship between RGS10, epigenetic modifications, and immune responses in FMF. While RGS10 may initially enhance immune responses, genetic mutations and epigenetic changes associated with FMF acute episode may override this regulatory effect, resulting in increased inflammation and clinical symptoms. Moreover, our study revealed elevated levels of specific histone modifications in the context of FMF, suggesting significant epigenetic changes that could contribute to the disease pathogenesis. Understanding these associations opens new avenues for research and potential therapeutic interventions, potentially involving epigenetic therapies targeting histone modifications.


Subject(s)
Diabetes Mellitus, Type 1 , Familial Mediterranean Fever , RGS Proteins , Humans , Familial Mediterranean Fever/genetics , Histone Code , Histones/genetics , Epigenesis, Genetic , Diabetes Mellitus, Type 1/genetics , Inflammation/genetics , DNA , Pyrin/genetics , RGS Proteins/genetics
11.
Int J Mol Med ; 53(3)2024 Mar.
Article in English | MEDLINE | ID: mdl-38214344

ABSTRACT

Osteocyte function is critical for metabolism, remodelling and regeneration of bone tissue. In the present study, the roles of regulator of G protein signalling 18 (RGS18) were assessed in the regulation of osteocyte proliferation and bone formation. Target genes and signalling pathways were screened using the Gene Expression Omnibus (GEO) database and Gene Set Enrichment Analysis (GSEA). The function of RGS18 and the associated mechanisms were analysed by Cell Counting Kit 8 assay, 5­ethynyl­2'­deoxyuridine assay, flow cytometry, reverse transcription­quantitative PCR, western blotting and immunostaining. Overlap analysis of acutely injured subjects (AIS) and healthy volunteers (HVs) from the GSE93138 and GSE93215 datasets of the GEO database identified four genes: KIAA0825, ANXA3, RGS18 and LIPN. Notably, RGS18 was more highly expressed in peripheral blood samples from AIS than in those from HVs. Furthermore, RGS18 overexpression promoted MLO­Y4 and MC3T3­E1 cell viability, proliferation and S­phase arrest, but inhibited apoptosis by suppressing caspase­3/9 cleavage. Silencing RGS18 exerted the opposite effects. GSEA of GSE93138 revealed that RGS18 has the ability to regulate MAPK signalling. Treatment with the MEK1/2 inhibitor PD98059 reversed the RGS18 overexpression­induced osteocyte proliferation, and treatment with the ERK1/2 activator 12­O­tetradecanoylphorbol­13­acetate reversed the effects of RGS18 silencing on osteocyte proliferation. In conclusion, RGS18 may contribute to osteocyte proliferation and bone fracture healing via activation of ERK signalling.


Subject(s)
Extracellular Signal-Regulated MAP Kinases , Osteocytes , RGS Proteins , Humans , Apoptosis/genetics , Cell Proliferation/genetics , GTP-Binding Proteins , Signal Transduction , Animals , Mice , 3T3 Cells , RGS Proteins/genetics
12.
Mol Metab ; 80: 101882, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38237897

ABSTRACT

OBJECTIVE: Nonalcoholic fatty liver disease (NAFLD) is an emerging public health threat as the most common chronic liver disease worldwide. However, there remains no effective medication to improve NAFLD. G protein-coupled receptors (GPCRs) are the most frequently investigated drug targets family. The Regulator of G protein signaling 14 (RGS14), as an essential negative modulator of GPCR signaling, plays important regulatory roles in liver damage and inflammatory responses. However, the role of RGS14 in NAFLD remains largely unclear. METHODS AND RESULTS: In this study, we found that RGS14 was decreased in hepatocytes in NAFLD individuals in a public database. We employed genetic engineering technique to explore the function of RGS14 in NAFLD. We demonstrated that RGS14 overexpression ameliorated lipid accumulation, inflammatory response and liver fibrosis in hepatocytes in vivo and in vitro. Whereas, hepatocyte specific Rgs14-knockout (Rgs14-HKO) exacerbated high fat high cholesterol diet (HFHC) induced NASH. Further molecular experiments demonstrated that RGS14 depended on GDI activity to attenuate HFHC-feeding NASH. More importantly, RGS14 interacted with Guanine nucleotide-binding protein (Gi) alpha 1 and 3 (Giα1/3, gene named GNAI1/3), promoting the generation of cAMP and then activating the subsequent AMPK pathways. GNAI1/3 knockdown abolished the protective role of RGS14, indicating that RGS14 binding to Giα1/3 was required for prevention against hepatic steatosis. CONCLUSIONS: RGS14 plays a protective role in the progression of NAFLD. RGS14-Giα1/3 interaction accelerated the production of cAMP and then activated cAMP-AMPK signaling. Targeting RGS14 or modulating the RGS14-Giα1/3 interaction may be a potential strategy for the treatment of NAFLD in the future.


Subject(s)
Non-alcoholic Fatty Liver Disease , RGS Proteins , Signal Transduction , Humans , AMP-Activated Protein Kinases/metabolism , Hepatocytes/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , RGS Proteins/metabolism
13.
Arch Suicide Res ; 28(1): 71-89, 2024.
Article in English | MEDLINE | ID: mdl-36772904

ABSTRACT

Suicide is defined as the action of harming oneself with the intention of dying. It is estimated that worldwide, one person dies by suicide every 40 s, making it a major health problem. Studies in families have suggested that suicide has a genetic component, so the search for genetic variants associated with suicidal behavior could be useful as potential biomarkers to identify people at risk of suicide. In Mexico, some studies of gene variants related to neurotransmission and other important pathways have been carried out and potential association of variants located in the following genes has been suggested: SLC6A4, SAT-1, TPH-2, ANKK1, GSHR, SCARA50, RGS10, STK33, COMT, and FKBP5. This systematic review shows the genetic studies conducted on the Mexican population. This article contributes by compiling the existing information on genetic variants and genes associated with suicidal behavior, in the future could be used as potential biomarkers to identify people at risk of suicide.


Subject(s)
RGS Proteins , Suicide , Humans , Mexico/epidemiology , Suicidal Ideation , Biomarkers , Serotonin Plasma Membrane Transport Proteins , Protein Serine-Threonine Kinases
14.
Mol Cell Proteomics ; 23(2): 100705, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38135118

ABSTRACT

The microbe-associated molecular pattern flg22 is recognized in a flagellin-sensitive 2-dependent manner in root tip cells. Here, we show a rapid and massive change in protein abundance and phosphorylation state of the Arabidopsis root cell proteome in WT and a mutant deficient in heterotrimeric G-protein-coupled signaling. flg22-induced changes fall on proteins comprising a subset of this proteome, the heterotrimeric G protein interactome, and on highly-populated hubs of the immunity network. Approximately 95% of the phosphorylation changes in the heterotrimeric G-protein interactome depend, at least partially, on a functional G protein complex. One member of this interactome is ATBα, a substrate-recognition subunit of a protein phosphatase 2A complex and an interactor to Arabidopsis thaliana Regulator of G Signaling 1 protein (AtRGS1), a flg22-phosphorylated, 7-transmembrane spanning modulator of the nucleotide-binding state of the core G-protein complex. A null mutation of ATBα strongly increases basal endocytosis of AtRGS1. AtRGS1 steady-state protein level is lower in the atbα mutant in a proteasome-dependent manner. We propose that phosphorylation-dependent endocytosis of AtRGS1 is part of the mechanism to degrade AtRGS1, thus sustaining activation of the heterotrimeric G protein complex required for the regulation of system dynamics in innate immunity. The PP2A(ATBα) complex is a critical regulator of this signaling pathway.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Heterotrimeric GTP-Binding Proteins , RGS Proteins , Arabidopsis/metabolism , Phosphorylation , Arabidopsis Proteins/metabolism , Proteome/metabolism , RGS Proteins/chemistry , RGS Proteins/genetics , RGS Proteins/metabolism , Signal Transduction , Heterotrimeric GTP-Binding Proteins/metabolism , Flagellin/pharmacology , Flagellin/metabolism , Phosphoric Monoester Hydrolases/metabolism
15.
Cell Mol Biol Lett ; 28(1): 102, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38066447

ABSTRACT

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a disease with high mortality and morbidity. Regulator of G protein signaling protein 6 (RGS6), identified as a tumor suppressor gene, has received increasing attention owing to its close relationship with oxidative stress and inflammation. However, the association between ARDS and RGS6 has not been reported. METHODS: Congruously regulated G protein-coupled receptor (GPCR)-related genes and differentially expressed genes (DEGs) in an acute lung injury (ALI) model were identified, and functional enrichment analysis was conducted. In an in vivo study, the effects of RGS6 knockout were studied in a mouse model of ALI induced by lipopolysaccharide (LPS). HE staining, ELISA, and immunohistochemistry were used to evaluate pathological changes and the degree of inflammation. In vitro, qRT‒PCR, immunofluorescence staining, and western blotting were used to determine the dynamic changes in RGS6 expression in cells. The RGS6 overexpression plasmid was constructed for transfection. qRT‒PCR was used to assess proinflammatory factors transcription. Western blotting and flow cytometry were used to evaluate apoptosis and reactive oxygen species (ROS) production. Organoid culture was used to assess the stemness and self-renewal capacity of alveolar epithelial type II cells (AEC2s). RESULTS: A total of 110 congruously regulated genes (61 congruously upregulated and 49 congruously downregulated genes) were identified among GPCR-related genes and DEGs in the ALI model. RGS6 was downregulated in vivo and in vitro in the ALI model. RGS6 was expressed in the cytoplasm and accumulated in the nucleus after LPS stimulation. Compared with the control group, we found higher mortality, more pronounced body weight changes, more serious pulmonary edema and pathological damage, and more neutrophil infiltration in the RGS6 knockout group upon LPS stimulation in vivo. Moreover, AEC2s loss was significantly increased upon RGS6 knockout. Organoid culture assays showed slower alveolar organoid formation, fewer alveolar organoids, and impaired development of new structures after passaging upon RGS6 knockout. In addition, RGS6 overexpression decreased ROS production as well as proinflammatory factor transcription in macrophages and decreased apoptosis in epithelial cells. CONCLUSIONS: RGS6 plays a protective role in ALI not only in early inflammatory responses but also in endogenous lung stem cell regeneration.


Subject(s)
Acute Lung Injury , RGS Proteins , Respiratory Distress Syndrome , Animals , Mice , Acute Lung Injury/genetics , Acute Lung Injury/metabolism , GTP-Binding Proteins/adverse effects , GTP-Binding Proteins/metabolism , Inflammation/pathology , Lipopolysaccharides , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism , Respiratory Distress Syndrome/genetics , Respiratory Distress Syndrome/metabolism , RGS Proteins/metabolism
16.
Biochem Pharmacol ; 218: 115904, 2023 12.
Article in English | MEDLINE | ID: mdl-37922976

ABSTRACT

Angiotensin II (AngII), as an octapeptide hormone normally ionized at physiological pH, cannot cross cell membranes and thus, relies on, two (mainly) G protein-coupled receptor (GPCR) types, AT1R and AT2R, to exert its intracellular effects in various organ systems including the cardiovascular one. Although a lot remains to be elucidated about the signaling of the AT2R, AT1R signaling is known to be remarkably versatile, mobilizing a variety of G protein-dependent and independent signal transduction pathways inside cells to produce a biological outcome. Cardiac AT1R signaling leads to hypertrophy, adverse remodeling, fibrosis, while vascular AT1R signaling raises blood pressure via vasoconstriction, but also elicits hypertrophic, vascular growth/proliferation, and pathological remodeling sets of events. In addition, adrenal AT1R is the major physiological stimulus (alongside hyperkalemia) for secretion of aldosterone, a mineralocorticoid hormone that contributes to hypertension, electrolyte abnormalities, and to pathological remodeling of the failing heart. Regulator of G protein Signaling (RGS) proteins, discovered about 25 years ago as GTPase-activating proteins (GAPs) for the Gα subunits of heterotrimeric G proteins, play a central role in silencing G protein signaling from a plethora of GPCRs, including the AngII receptors. Given the importance of AngII and its receptors, but also of several RGS proteins, in cardiovascular homeostasis, the physiological and pathological significance of RGS protein-mediated modulation of cardiovascular AngII signaling comes as no surprise. In the present review, we provide an overview of the current literature on the involvement of RGS proteins in cardiovascular AngII signaling, by discussing their roles in cardiac (cardiomyocyte and cardiofibroblast), vascular (smooth muscle and endothelial cell), and adrenal (medulla and cortex) AngII signaling, separately. Along the way, we also highlight the therapeutic potential of enhancement of, or, in some cases, inhibition of each RGS protein involved in AngII signaling in each one of these cell types.


Subject(s)
Cardiovascular System , RGS Proteins , Humans , Angiotensin II/metabolism , Cardiovascular System/metabolism , GTP-Binding Proteins/metabolism , Hypertrophy , Receptor, Angiotensin, Type 1/metabolism , RGS Proteins/genetics , RGS Proteins/metabolism , Signal Transduction
17.
Biol Direct ; 18(1): 78, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37986113

ABSTRACT

BACKGROUND: Regulator of G protein signaling 5 (RGS5), as a negative regulator of G protein-coupled receptor (GPCR) signaling, is highly expressed in arterial VSMCs and pericytes, which is involved in VSMC phenotypic heterogeneity and vascular remodeling in tumors. However, its role in normal and tumor vascular remodeling is controversial. METHODS: RGS5 knockout (Rgs5-KO) mice and RGS5 overexpression or knockdown in VSMCs in vivo by adeno-associated virus type 9 (AAV) carrying RGS5 cDNA or small hairpin RNA (shRNA) targeting RGS5 were used to determine the functional significance of RGS5 in vascular inflammation. RGS5 expression in the triple-negative (TNBCs) and non-triple-negative breast cancers (Non-TNBCs) was determined by immunofluorescent and immunohistochemical staining. The effect of breast cancer cell-conditioned media (BC-CM) on the pro-inflammatory phenotype of VSMCs was measured by phagocytic activity assays, adhesion assay and Western blot. RESULTS: We identified that knockout and VSMC-specific knockdown of RGS5 exacerbated accumulation and pyroptosis of pro-inflammatory VSMCs, resulting in vascular remodeling, which was negated by VSMC-specific RGS5 overexpression. In contrast, in the context of breast cancer tissues, the role of RGS5 was completely disrupted. RGS5 expression was increased in the triple-negative breast cancer (TNBC) tissues and in the tumor blood vessels, accompanied with an extensive vascular network. VSMCs treated with BC-CM displayed enhanced pro-inflammatory phenotype and higher adherent with macrophages. Furthermore, tumor-derived RGS5 could be transferred into VSMCs. CONCLUSIONS: These findings suggest that tumor microenvironment shifts the function of RGS5 from anti-inflammation to pro-inflammation and induces the pro-inflammatory phenotype of VSMCs that is favorable for tumor metastasis.


Subject(s)
Neoplasms , RGS Proteins , Mice , Animals , RGS Proteins/genetics , RGS Proteins/metabolism , Vascular Remodeling/genetics , Muscle, Smooth, Vascular/metabolism , Tumor Microenvironment , Mice, Knockout , Homeostasis , Inflammation , Cell Proliferation
18.
Cell Commun Signal ; 21(1): 316, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37924113

ABSTRACT

G protein-coupled receptors (GPCRs) play a key role in regulating the homeostasis of the internal environment and are closely associated with tumour progression as major mediators of cellular signalling. As a diverse and multifunctional group of proteins, the G protein signalling regulator (RGS) family was proven to be involved in the cellular transduction of GPCRs. Growing evidence has revealed dysregulation of RGS proteins as a common phenomenon and highlighted the key roles of these proteins in human cancers. Furthermore, their differential expression may be a potential biomarker for tumour diagnosis, treatment and prognosis. Most importantly, there are few systematic reviews on the functional/mechanistic characteristics and clinical application of RGS family members at present. In this review, we focus on the G-protein signalling regulator (RGS) family, which includes more than 20 family members. We analysed the classification, basic structure, and major functions of the RGS family members. Moreover, we summarize the expression changes of each RGS family member in various human cancers and their important roles in regulating cancer cell proliferation, stem cell maintenance, tumorigenesis and cancer metastasis. On this basis, we outline the molecular signalling pathways in which some RGS family members are involved in tumour progression. Finally, their potential application in the precise diagnosis, prognosis and treatment of different types of cancers and the main possible problems for clinical application at present are discussed. Our review provides a comprehensive understanding of the role and potential mechanisms of RGS in regulating tumour progression. Video Abstract.


Subject(s)
Neoplasms , RGS Proteins , Humans , Signal Transduction , GTP-Binding Proteins/chemistry , GTP-Binding Proteins/metabolism , RGS Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism
19.
J Immunol ; 211(11): 1656-1668, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37850953

ABSTRACT

Regulatory T cells (Tregs) are critical mediators of immune tolerance and play a diametric role in cancer and autoimmunity. Tumor-infiltrating Tregs are often associated with poor prognosis in solid tumors because their enrichment in the tumor microenvironment contributes to immunosuppression. Conversely, dysregulation in the Treg compartment can disrupt self-tolerance, leading to autoimmunity. In the present study, we describe what is, to our knowledge, a novel regulator of Tregs, the GTPase activator regulator of G protein 1 (RGS1), demonstrating that RGS1-deficient human Tregs show downregulation of Treg-associated genes and are less immunosuppressive. These RGS1-deficient Tregs exhibit perturbations to the FOXP3-c-MYC transcriptional axis and downstream metabolic and autophagy programs by shifting their energy demands toward glycolysis and rendering them less autophagic. Taken together, RGS1 may serve as an apical node of Treg function by regulating the FOXP3-c-MYC transcriptional axis, thereby providing a therapeutic rationale for targeting RGS1 for treatment of cancer and autoimmune diseases.


Subject(s)
Autoimmune Diseases , Neoplasms , RGS Proteins , Humans , T-Lymphocytes, Regulatory , Autoimmune Diseases/pathology , Autoimmunity , Neoplasms/pathology , Autophagy/genetics , Forkhead Transcription Factors/metabolism , Tumor Microenvironment , RGS Proteins/genetics , RGS Proteins/metabolism
20.
Oncoimmunology ; 12(1): 2260620, 2023.
Article in English | MEDLINE | ID: mdl-37781234

ABSTRACT

Colorectal cancer (CRC) remains a leading cause of cancer-related mortality despite efforts to improve standard interventions. As CRC patients can benefit from immunotherapeutic strategies that incite effector T cell action, cancer vaccines represent a safe and promising therapeutic approach to elicit protective and durable immune responses against components of the tumor microenvironment (TME). In this study, we investigate the pre-clinical potential of a Listeria monocytogenes (Lm)-based vaccine targeting the CRC-associated vasculature. CRC survival and progression are reliant on functioning blood vessels to effectively mediate various metabolic processes and oxygenate underlying tissues. We, therefore, advance the strategy of initiating immunity in syngeneic mouse models against the endogenous pericyte antigen RGS5, which is a critical mediator of pathological vascularization. Overall, Lm-based vaccination safely induced potent anti-tumor effects that consisted of recruiting functional Type-1-associated T cells into the TME and reducing tumor blood vessel content. This study underscores the promising clinical potential of targeting RGS5 against vascularized tumors like CRC.


Subject(s)
Colonic Neoplasms , Listeria monocytogenes , Listeria , RGS Proteins , Mice , Animals , Humans , Pericytes , Colonic Neoplasms/prevention & control , Listeria monocytogenes/metabolism , Vaccination , Tumor Microenvironment , RGS Proteins/genetics , RGS Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...